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Introduction

▪ Pose Estimation

Determining the position and orientation in an environment.

▪ Uses:

Navigation – Manipulation - ....

▪ Different Approaches: 

Satellite-based Localization - Network-based Localization - Indoor 

localization – Visual Localization etc…

Interest: Visual Localization

No ‘best’ method
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Paper 1: Camera-to-Robot Pose Estimation from a Single 

Image
▪ Main Contributions of this paper:

- External Camera Pose Estimation from a single RGB image using 

Deep neural network to detect 2D keypoints

- Trained the network only on synthetic data

- Used PnP to estimate the camera to robot transformation

- Creating an Online Calibration Method

[Timothy E. Lee et al. (Dec 2019) NVIDIA + CMU]
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1.1.1 Approaches: Classical Approach

▪ Fiducial markers at the end effector => Collect several images 

=>Solve a homogenous linear equation system for the 

transformation 

▪ Cumbersome procedure of physically modifying the end effector to 

collect a set of images, running an off-line calibration procedure, 

and (optionally) removing the fiducial marker.

▪ The entire calibration procedure must be repeated from scratch if 

the camera moves.
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1.1.2 Approaches: Recent Approaches

▪ Using deep learning to map RGB images to world coordinates on a 

table.

▪ In this approach the learned mapping is specific to the task or 

environment.

▪ Preventing the mapping from being applied to new tasks or 

environments without retraining.
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1.2 Procedure:

▪ Encoder-decoder neural network processes the image to produce a 

set of n belief maps, one per keypoint. 

▪ Then, PnP uses the 2D belief maps, along with the forward 

kinematics and the camera intrinsics, to compute the camera-to-

robot pose, 𝑪
𝑅𝑇.
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Perspective-n-Point (PnP):

The goal of the Perspective-n-Point problem (PnP) is to find the relative pose between an object and 

a camera from a set of n pairings between 3D points and their corresponding 2D projections

[https://jml-note.tistory.com/entry/Perspective-3-PointP3P-Algorithm]
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1.2.1 Procedure: Network Architecture:

▪ Encoder-Decoder network to detect the keypoints - takes as input 

an RGB image of size. 

▪ The output captures a 2D belief map for each keypoint, where pixel 

values represent the likelihood that the keypoint is projected onto 

that pixel.

w × h × 3
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1.2.2 Procedure: Pose Estimation

▪ Given the 2D keypoint coordinates, robot joint configuration with 

forward kinematics, and camera intrinsics, PnP is used to retrieve 

the pose of the robot

▪ The keypoint coordinates are calculated as a weighted average 

of values near thresholded peaks in the output belief maps.

▪ Applying Gaussian smoothing to the belief maps to reduce the 

effects of noise. 
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1.2.3 Procedure: Data Generation

▪ Network is trained using only synthetic data with domain 

randomization (DR) and image augmentation

▪ To generate the data, open-source NVIDIA 

Deep learning Dataset Synthesizer (NDDS) 

tool was used, which is a plugin for the UE4 

game engine. NDDS is augmented to 

export 2D/3D keypoint locations



Slide 11

Software-defined Communication Systems
JProf. Fang-Jing WU

Networked Mobile Robot Systems | Unit Appendix – Proposal | Summer term 2023 | JProf Dr. Fang-Jing Wu

Domain Randomization:

▪ Domain Randomization Domain randomization is a systematic 

approach to data generation process that aims to enhance 

generalization of the machine learning algorithms to new 

environments.

Deep Learning with Domain Randomization

OpenAI Shadow Arm to solve Rubik’s Cube
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1.2.3 Procedure: Data Generation

▪ Various randomizations were applied: 

1) The robot’s joint angles were randomized within the joint limits. 

2) The camera was positioned freely in a somewhat truncated 

hemispherical shell around the robot, with angle ranging from 
−135◦ to +135◦ 

3) Three scene lights were positioned and oriented freely while 

randomizing both intensity and color. 

4) The scene background was randomly selected from the COCO 

dataset. 
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1.2.3 Procedure: Data Generation

▪ Data Generation:
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1.3 Metrics:

▪ Experiments were done on 3D data and the metric used:

▪ The Average Distance (ADD) Metric:

─ Average Euclidean distance of all 3D keypoints to their transformed 

versions, using the estimated camera pose as the transform.

─ ADD is a principled way to combine rotation and translation errors

T :  is the ground-truth camera-to-robot pose

Tˆ:  is the estimated camera-to-robot pose

P :  is the 3D keypoint location

n :  is the number of points
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1.3 Metrics:

▪ 3 versions of DREAM network were used:

─ VGG or Resnet Encoder

─ Full – Half – Quarter decoder output resolutions

▪ Configuration:

─ 50 epochs

─ Adam Optimization Algorithm

─ 1.5e-4 learning rate

─ 0.9 momentum

─ 100K synthetic DR images
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1.3 Metrics:

▪ A pose estimation is considered correct if ADD (-S) is smaller than 

an average distance threshold.

▪ The improvement due to increasing resolution is clear, but different 

architectures have only minimal impact for most scenarios.

Fig. 3. ADD results for three different variants of DREAM network on the simulated 

datasets. The numbers in parentheses are the area under the curve (AUC).
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1.3 Metrics:

▪ These results show that the training procedure is able to bridge the 

reality gap: There is only a modest difference between the best 

performing network on simulated and real data.

Fig. 4. ADD results on the real Panda-3Cam dataset.
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Paper 2: Markerless Camera-to-Robot Pose Estimation via Self-

supervised Sim-to-Real Transfer

▪ End-to-end pose estimation framework 

that is capable of online camera-to-robot 

calibration and a self-supervised 

training method to scale the training to 

unlabeled real-world data

▪ Approaches to robot pose estimation are 

classified into two categories: keypoint-

based and rendering-based methods

▪ The CtRNet uses keypoints for faster 

inference speed and rendering for higher 

performance for image-level self-

supervision is used. 

Figure. Comparison of speed 

and accuracy (based on AUC 

metric) for existing image-based 

robot pose estimation methods.

[Jingpei Lu, Florian Richter, and Michael C. Yip University of 

California, San Diego (Mar 2023)]
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Paper 2: Markerless Camera-to-Robot Pose Estimation via Self-

supervised Sim-to-Real Transfer

▪ Differential Rendering:

Source: DFR: Differentiable Function Rendering for Learning 3DGeneration from Images

Segmentation

Model

Seg Output

Silhouette
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2.1: Self-Supervised Training for Sim-to-Real Transfer

▪ Most effective way to adapt the neural network to the real world is 

directly training the network on real data.

▪ Self supervised method train network without 3D annotations.

▪ Pipeline includes foreground segmentation to generate a mask of 

the robot, fseg, alongside the pose estimation, fpose.
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2.1: Self-Supervised Training for Sim-to-Real Transfer

▪ The self-supervised objective: optimize neural network parameters 

by minimizing the difference between the rendered silhouette image 

and the mask image.

L: loss function capturing the image differences

R: diff renderer

K: camera params

Bb: backbone

Kp: keypoint

I: RGB Image
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2.1: Self-Supervised Training for Sim-to-Real Transfer

▪ CtRNet’s parameters (fseg and fpose) pretrained, with synthetic 

data. 

▪ During the self-training phase, where CtRNet learns with real data, 

the objective loss captures the difference between the segmentation 

result and the rendered image. 

▪ The loss is iteratively back-propagated to, Θ, where each iteration 

fseg and fpose take turns learning from each other to overcome the 

sim-to-real gap. 

▪ Silhouette from Differential Ren. 

M: robot mask
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2.1: Self-Supervised Training for Sim-to-Real Transfer

Before

After
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▪ DREAM-real Dataset: Real-world robot dataset collected with 3 

different cameras: Azure Kinect, XBOX 360 Kinect, and RealSense.

▪ Contains 50K RGB images

2.2 Experiments:

Comparison of paper’s methods with the state-of-the-art methods on DREAM-real 

datasets using ADD metric. 
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▪ Qualitative results of CtRNet foreground segmentation and pose 

estimation on DREAM-real dataset

2.2 Experiments:

Input RGB 

Image:

Foreground 

Segmentation:

Projected 

skeleton based 

on estimated 

robot pose:
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Paper 3: External Camera-based Mobile Robot Pose Estimation 

for Collaborative Perception with Smart Edge Sensors

▪ Multi-view keypoint detection marker-less mobile robot pose estimation 

▪ Collaborative perception in real-world scenes between mobile robot 

and sensor network to build a globally consistent 3D semantic map.

▪ For robot pose estimation, Convolutional Neural Networks (CNNs) used 

for robot detection and estimation of 2D keypoints
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Paper 3: External Camera-based Mobile Robot Pose Estimation 

for Collaborative Perception with Smart Edge Sensors

▪ CNN for keypoint estimation is trained only on synthetic data obtained 

through randomized scene generation

▪ Robot keypoint detections are used to estimate the robot’s pose via 

multi-view minimization of reprojection errors.

▪ Multiple sources for localization, the external camera views + robot’s 

internal 2D LiDAR-based navigation, increases robustness in highly 

cluttered, dynamic real-world environments, where few distinct features, 

such as walls or columns, are not visible in the LiDAR due to 

occlusions

[Simon Bultmann, 

Raphael 

Memmesheimer, and 

Sven Behnke (uni of 

Bonn) ICRA June 23]
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3.1 Method: A. Robot Keypoint Detection 

▪ 1) Network Architecture:

─ Detecting a bounding box of the robot

─ Estimating keypoints on the crop of the robot

─ MobileDet architecture is used for robot detection and a network with a 

MobileNet V3 backbone for keypoint estimation.
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3.1 Method: A. Robot Keypoint Detection 

▪ 2) Training Data:

─ Train the networks predominantly on synthetic data

─ CNN for keypoint estimation is trained purely on simulated data (36k 

samples), while we combine synthetic data and manually annotated real 

images (12k resp. 3.5k samples) for robot detection

─ The combination of real and synthetic data helps to boost detector 

performance in highly cluttered real-world environments
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3.1 Method: B. Robot Pose Estimation 

▪ 2D robot keypoints are sent over a network to a central backend, where 

detections from multiple cameras are synchronized. The robot pose 𝑅
𝑊𝑇 

is then recovered by solving a weighted nonlinear least squares problem 

via minimization of multi-view reprojection errors:

▪ N externally mounted cameras Ci , i = 1, . . . , N

▪ 2D projections kij ∈ 𝑅2 of M keypoints pj ∈ 𝑅3 , j = 1, . . . , M

▪ weights wij depending on the confidence of the keypoint detection in the 

respective camera

▪ Levenberg-Marquardt algorithm for optimization
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3.1 Method: B. Robot Pose Estimation 

Overview of the proposed sensor network architecture for collaborative localization and 

perception. N external smart edge sensors observe mobile HSR robot and scene from static 

viewpoints. Robot pose is initialized and corrected via external camera pose estimation
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▪ Four external smart edge sensors are mounted at ∼2.5 m height in the 

center of the room to initialize and correct the robot localization

▪ As a reference for pose estimation, HTC Vive Pro tracking system 

was employed which was shown to yield position accuracies within a 

few millimeters

▪ For evaluation of the pose estimation accuracy, we define seven 

waypoints in the area observed by the external cameras and connect 

them in different ways to three different trajectories

3.2 EVALUATION:
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3.2 EVALUATION:

▪ The pose correction from external cameras is not sent to the robot 

during these experiments to measure the deviation over the full 

trajectory.

▪ Using only the internal LiDAR-based localization, the robot cannot 

reach all waypoints in three of five trials and the success rate reaches 

only 1 / 5. Failures occur after 38 m of traveled distance, on average. 

▪ With the proposed localization feedback, the robot completes the ∼60 m 

long trajectory successfully in all trials.
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3.2 EVALUATION:

▪ The typical position error of our proposed method for mobile robot 

pose estimation is below 2.8 cm when detected in at least two cameras, 

and below 4.3 cm when detected in a single camera, while the robot 

localization typically deviates more than 19 cm after only 5 m of traveled 

distance.

▪ The pose correction feedback 

significantly improves the 

robot’s localization.
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4 Final Thoughts:

▪ The majority of modern robotic automation utilizes cameras for sensory 

information about the environment to complete tasks and provide 

feedback for closed-loop control.

▪ Markerless camera-to-robot pose estimation which has been utilized for 

various applications such as surgical robotic manipulation and mobile 

robot manipulators etc.

▪ Continuous Improvement on these algorithms
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