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Motivation

▪ Improving accuracy

and efficiency

▪ Mocap system and 

hardware

▪ Diving deeper into control 

systems and software 

development

▪ Understanding Reinforcement 

Learning algorithms.

▪ Teamwork

▪ Trajectory tracking 

with empirical 

dynamic 

car models.



Introduction – Chronos car

▪ Agile Car-like robot (1/28th scale of a car)

▪ Uses the Ackermann steering 

mechanism.

▪ Equipped with open-source CRS software 

framework

▪ Allowing the implementation of custom 

algorithms in control, localization etc.



Objective

▪ Apply various Control and Reinforcement Learning approaches 

to autonomously drive the car on the track.



Introduction – CRS (Control and Robotics Software)

Edited image from [1] Andrea Carron, Sabrina Bodmer, Lukas Vogel, René Zurbrüugg, David Helm, Rahel Rickenbach, Simon Muntwiler, Jerome Sieber 

and Melanie N. Zeilinger, "Chronos and CRS: Design of a miniature car-like robot and a software framework for single and multi-agent robotics and 

control," 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023, pp. 1371-1378

[1] CRS Framework



Setup of Testing Arena

Infrared Cameras

(tracks the markers)
Testing 

Arena

▪ Localization for hardware experiment via 

the Optitrack motion capture system.
Marker

▪ The state of the car is communicated to the host PC

and then sent across the ROS topic.



Car Simulation Model

Kinematic Model

▪ Front and rear wheels share 

a common center of rotation

▪ It neglects lateral slip and other 

dynamic parameters.

Pacejka Model

▪ Empirical simulation model of the car that 

considers the slip, various tire forces and 

friction.

▪ It realistically depicts the behavior of the 

car on the track.

[1] The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Kinematic-bicycle-model-of-

the-vehicle_fig1_318810853 [accessed 23 Apr, 2024]

[2] Fröhlich, Lukas & Küttel, Christian & Arcari, Elena & Hewing, Lukas & Zeilinger, Melanie & Carron, Andrea. (2021). Model Learning and Contextual Controller Tuning for Autonomous Racing.

[1] Kinematic Bicycle diagram                                                                                                [2] Pacejka Bicycle diagram
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▪ Reference path frame:

▪ Vehicle frame:

▪ Error can be calculated as follow:

▪ Lateral error

▪ Orientation error

▪ Vehicle pose in the global frame

Path Following Feedback Control

Source: RST



Custom Controller Node in Matlab/Python



Steering angle feedback for P/PD Controller

▪ Proportional (P) Controller

▪ Considering constant velocity

▪ Steering angle feedback control :

▪ Proportional-derivative (PD) Controller

▪ Considering constant velocity

▪ Steering angle feedback control :



Controller with Feedforward action

▪ It anticipates the track curvature and incorporates 

the equivalent steering angle as a feedforward action

▪ Steering angle feedforward control

▪ Curvature of the path



Hardware Test with Controller with Feedforward
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▪ Reinforcement learning (RL) learns by interacting with 

the environment, handling complexity without an 

explicit model.

▪ Generalization Ability

▪ Error Minimization

▪ Optimize the tracking performance.

Why Reinforcement Learning ?

Source: https://www.scribbr.com/ai-tools/reinforcement-learning/



Implementation of Reinforcement Learning

▪ Goal
▪ Learn through interaction

▪ Enable multiple goals through training
[Lap time - Centerline Tracking - Navigate from any starting position]

▪ Simulations used:
▪ CRS Simulation for Offline Training

▪ Matlab Simulation for Online Training

▪ Exploring Discounting and ε-Greedy strategies

▪ Exploring learning from interaction using RL and 

Imitation Learning

Randomized start poses for varied 

experience buffer



Parameters for Algorithms

Track Segmentation

State Vector

Rewards
+ Progress over track

▪ Progress in each segment

▪ Extra reward for crossing each segment

- Penalizing lateral & orientation errors

- Penalties for collision

- Penalty for very sharp turns

Action Spaces
▪ Constant torque, variable steering angles

▪ Discrete Action Space: Variations in size & resolution of 

the action space (DQN)

▪ Continuous action space: [-δ, +δ] (DDPG)
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Matlab Simulation [Offline]

▪ Pros
▪ Accurate representation of vehicle 

behavior using the Pacejka Model.

▪ Enables exploration closer to real-life 

vehicle dynamics.

▪ Cons
▪ Computationally expensive for Online 

Training with Matlab



Matlab Simulation [Online]

▪ Pros
▪ Able to collect more samples quicker

▪ Easier to implement certain functions

▪ Cons
▪ Less accurate model



Online Matlab RL Model

Given constants:
a = 6.1 lr = 0.038

b = 0.2 lf = 0.052

𝜏 = 0.6

[1] The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? - Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/Kinematic-bicycle-model-of-the-vehicle_fig1_318810853 [accessed 23 Apr, 2024]

[2] https://gitlab.ethz.ch/ics/crs/-/tree/main/software?ref_type=heads

[1] Kinematic Bicycle diagram

[2] Kinematic equations obtained from CRS Project 

wiki



Offline Learning Results

DQN Agent DDPG Agent



Best Result for Offline Learning using Matlab

▪ Parameters:

▪ 4000 episodes with 200 steps 

in each

▪ State Vector:

▪ Current pose

▪ Lateral & Orientation Errors

▪ Curvature of current & next 

segment

▪ Training from 2 poses on the 

track

▪ Continuous Action Space (with 

DDPG Agent)

▪ Increased sampling time

▪ Reward



Progress

From: CRS Simulation testing To: Chronos Car Experiment



Online Learning Results

PID Reference DQN (discrete actions)

PPO (continuous actions) TRPO (continuous actions)



Online Learning Results

PID Reference

PPO (continuous actions) DQN (discrete actions) TRPO (continuous actions)

▪ Episode Reward

▪ Q0 (the estimate of the discounted long-term reward at the start of each episode)



CRS Simulation and Real Car

CRS Simulation (PPO agent) Real Car (PPO agent)
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RL framework

▪ RL Framework: Stable Baselines 3

▪ PyTorch implementation of multiple RL 

algorithms

▪ DQN, DDPG, SAC, PPO

▪ Features:

▪ Unified structure for all algorithms.

▪ Tensorboard support.

▪ Advantages:

▪ Straightforward implementation, training and 

testing.

▪ Disadvantages:

▪ Too high level, not possible to see some 

behaviors.

▪ Restrictive for some configurations
Tensorboard

Source: https://stable-

baselines3.readthedocs.io/en/master/



Environment

▪ How to use Stable Baselines 3 with existing CRS simulation (custom) environment ?

▪ Gymnasium: API for all single agent reinforcement learning environments

▪ Structure code to match Gymnasium interface:

▪ Implement methods and define attributes from the inherited Env class:

▪ Step():

▪ Execute action

▪ Obtain reward

▪ Calculate next state

▪ Reset(): Go back to initial state after finishing episode

▪ Action_space: All possible actions that the agent can execute - Discrete or continuous (Box)

▪ Observation_space: Space where all states are valid

https://gymnasium.farama.org/api/env/



▪ DQN and DDPG training 

iterations

▪ Action Space: 

▪ DQN1: 15 possible 

steering angles between    

-0.4 and 0.4

▪ DQN2: 5 possible steering 

angles between -0.4 and 

0.4
▪ Common: batch_size = 32

▪ DDPG: Continuous 

between -0.6 and 0.6
▪ Common params: net_arch = [10,10], 

batch_size = 32

DQN & DDPG



Reward Gates

▪ There are 20 reward gates along the total 

length of the track.

▪ The car obtains a reward of 200 as it 

passes through the reward gate.

▪ The training convergence occurs at 150 

episodes

▪ This can be stated, as on completion of the 

track along with collision gives us a collected 

reward of 3950



Better convergence with reward gates

With reward gates Without reward gates 



On Hardware – using Reward Gates Method

Torque = 0.1 (43s) Torque = 0.2 (17s)
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Analysis

DDPG (Python) PPO (Matlab)DDPG (Matlab)

Torque: 0.13

Lap Time: 35 [sec]
Torque: 0.1

Lap Time: 68.4 [sec]

Torque: 0.12

Lap Time: 46 [sec]
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Insights Gained

▪ Practical Implementation of theoretical knowledge (RL)

▪ Learning fundamental skills like Git, Docker, ROS

▪ Implementation of different Algorithms and techniques 

according to the needs

▪ Deeper understanding about different parameters and 

hyperparameters of RL



Project Feedback

Feedback

▪ New concepts learned

▪ Group work

▪ Idea sharing

▪ Well-Structured way of working

▪ Simulation-Hardware Fusion

Can be improved

▪ Battery management

Future work

▪ Tests with different tracks

▪ RL to also learn best torques

▪ Consider more dynamic characteristics 

of car for learning



@rst_tuapl. Prof. Dr. rer. nat Frank Hoffmann

Lehrstuhl für Regelungssystemtechnik

Thank you for your kind attention!
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