
@rst_tu

Wayne Paul Martis, Shubhankar Kulkarni, Aashiv Shah, Rohit Sahasrabuddhe, Nicolás Duque, Eman Shahid,

Nabil Miri and Josh Kannemeyer

apl. Prof. Dr. rer. nat Frank Hoffmann

Lehrstuhl für Regelungssystemtechnik

Project Group, IRF, May 6th 2024

Chronos Miniature Car🏎️

Outline

Motivation & Introduction

Trajectory Tracking

Reinforcement Learning

RL in Matlab - Python

Analysis

Conclusion

Motivation

▪ Improving accuracy

and efficiency

▪ Mocap system and

hardware

▪ Diving deeper into control

systems and software

development

▪ Understanding Reinforcement

Learning algorithms.

▪ Teamwork

▪ Trajectory tracking

with empirical

dynamic

car models.

Introduction – Chronos car

▪ Agile Car-like robot (1/28th scale of a car)

▪ Uses the Ackermann steering

mechanism.

▪ Equipped with open-source CRS software

framework

▪ Allowing the implementation of custom

algorithms in control, localization etc.

Objective

▪ Apply various Control and Reinforcement Learning approaches

to autonomously drive the car on the track.

Introduction – CRS (Control and Robotics Software)

Edited image from [1] Andrea Carron, Sabrina Bodmer, Lukas Vogel, René Zurbrüugg, David Helm, Rahel Rickenbach, Simon Muntwiler, Jerome Sieber

and Melanie N. Zeilinger, "Chronos and CRS: Design of a miniature car-like robot and a software framework for single and multi-agent robotics and

control," 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023, pp. 1371-1378

[1] CRS Framework

Setup of Testing Arena

Infrared Cameras

(tracks the markers)
Testing

Arena

▪ Localization for hardware experiment via

the Optitrack motion capture system.
Marker

▪ The state of the car is communicated to the host PC

and then sent across the ROS topic.

Car Simulation Model

Kinematic Model

▪ Front and rear wheels share

a common center of rotation

▪ It neglects lateral slip and other

dynamic parameters.

Pacejka Model

▪ Empirical simulation model of the car that

considers the slip, various tire forces and

friction.

▪ It realistically depicts the behavior of the

car on the track.

[1] The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Kinematic-bicycle-model-of-

the-vehicle_fig1_318810853 [accessed 23 Apr, 2024]

[2] Fröhlich, Lukas & Küttel, Christian & Arcari, Elena & Hewing, Lukas & Zeilinger, Melanie & Carron, Andrea. (2021). Model Learning and Contextual Controller Tuning for Autonomous Racing.

[1] Kinematic Bicycle diagram [2] Pacejka Bicycle diagram

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab - Python

Analysis

Conclusion

▪ Reference path frame:

▪ Vehicle frame:

▪ Error can be calculated as follow:

▪ Lateral error

▪ Orientation error

▪ Vehicle pose in the global frame

Path Following Feedback Control

Source: RST

Custom Controller Node in Matlab/Python

Steering angle feedback for P/PD Controller

▪ Proportional (P) Controller

▪ Considering constant velocity

▪ Steering angle feedback control :

▪ Proportional-derivative (PD) Controller

▪ Considering constant velocity

▪ Steering angle feedback control :

Controller with Feedforward action

▪ It anticipates the track curvature and incorporates

the equivalent steering angle as a feedforward action

▪ Steering angle feedforward control

▪ Curvature of the path

Hardware Test with Controller with Feedforward

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab - Python

Analysis

Conclusion

▪ Reinforcement learning (RL) learns by interacting with

the environment, handling complexity without an

explicit model.

▪ Generalization Ability

▪ Error Minimization

▪ Optimize the tracking performance.

Why Reinforcement Learning ?

Source: https://www.scribbr.com/ai-tools/reinforcement-learning/

Implementation of Reinforcement Learning

▪ Goal
▪ Learn through interaction

▪ Enable multiple goals through training
[Lap time - Centerline Tracking - Navigate from any starting position]

▪ Simulations used:
▪ CRS Simulation for Offline Training

▪ Matlab Simulation for Online Training

▪ Exploring Discounting and ε-Greedy strategies

▪ Exploring learning from interaction using RL and

Imitation Learning

Randomized start poses for varied

experience buffer

Parameters for Algorithms

Track Segmentation

State Vector

Rewards
+ Progress over track

▪ Progress in each segment

▪ Extra reward for crossing each segment

- Penalizing lateral & orientation errors

- Penalties for collision

- Penalty for very sharp turns

Action Spaces
▪ Constant torque, variable steering angles

▪ Discrete Action Space: Variations in size & resolution of

the action space (DQN)

▪ Continuous action space: [-δ, +δ] (DDPG)

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab / Python

Analysis

Conclusion

Matlab Simulation [Offline]

▪ Pros
▪ Accurate representation of vehicle

behavior using the Pacejka Model.

▪ Enables exploration closer to real-life

vehicle dynamics.

▪ Cons
▪ Computationally expensive for Online

Training with Matlab

Matlab Simulation [Online]

▪ Pros
▪ Able to collect more samples quicker

▪ Easier to implement certain functions

▪ Cons
▪ Less accurate model

Online Matlab RL Model

Given constants:
a = 6.1 lr = 0.038

b = 0.2 lf = 0.052

𝜏 = 0.6

[1] The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Kinematic-bicycle-model-of-the-vehicle_fig1_318810853 [accessed 23 Apr, 2024]

[2] https://gitlab.ethz.ch/ics/crs/-/tree/main/software?ref_type=heads

[1] Kinematic Bicycle diagram

[2] Kinematic equations obtained from CRS Project

wiki

Offline Learning Results

DQN Agent DDPG Agent

Best Result for Offline Learning using Matlab

▪ Parameters:

▪ 4000 episodes with 200 steps

in each

▪ State Vector:

▪ Current pose

▪ Lateral & Orientation Errors

▪ Curvature of current & next

segment

▪ Training from 2 poses on the

track

▪ Continuous Action Space (with

DDPG Agent)

▪ Increased sampling time

▪ Reward

Progress

From: CRS Simulation testing To: Chronos Car Experiment

Online Learning Results

PID Reference DQN (discrete actions)

PPO (continuous actions) TRPO (continuous actions)

Online Learning Results

PID Reference

PPO (continuous actions) DQN (discrete actions) TRPO (continuous actions)

▪ Episode Reward

▪ Q0 (the estimate of the discounted long-term reward at the start of each episode)

CRS Simulation and Real Car

CRS Simulation (PPO agent) Real Car (PPO agent)

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab / Python

Analysis

Conclusion

RL framework

▪ RL Framework: Stable Baselines 3

▪ PyTorch implementation of multiple RL

algorithms

▪ DQN, DDPG, SAC, PPO

▪ Features:

▪ Unified structure for all algorithms.

▪ Tensorboard support.

▪ Advantages:

▪ Straightforward implementation, training and

testing.

▪ Disadvantages:

▪ Too high level, not possible to see some

behaviors.

▪ Restrictive for some configurations
Tensorboard

Source: https://stable-

baselines3.readthedocs.io/en/master/

Environment

▪ How to use Stable Baselines 3 with existing CRS simulation (custom) environment ?

▪ Gymnasium: API for all single agent reinforcement learning environments

▪ Structure code to match Gymnasium interface:

▪ Implement methods and define attributes from the inherited Env class:

▪ Step():

▪ Execute action

▪ Obtain reward

▪ Calculate next state

▪ Reset(): Go back to initial state after finishing episode

▪ Action_space: All possible actions that the agent can execute - Discrete or continuous (Box)

▪ Observation_space: Space where all states are valid

https://gymnasium.farama.org/api/env/

▪ DQN and DDPG training

iterations

▪ Action Space:

▪ DQN1: 15 possible

steering angles between

-0.4 and 0.4

▪ DQN2: 5 possible steering

angles between -0.4 and

0.4
▪ Common: batch_size = 32

▪ DDPG: Continuous

between -0.6 and 0.6
▪ Common params: net_arch = [10,10],

batch_size = 32

DQN & DDPG

Reward Gates

▪ There are 20 reward gates along the total

length of the track.

▪ The car obtains a reward of 200 as it

passes through the reward gate.

▪ The training convergence occurs at 150

episodes

▪ This can be stated, as on completion of the

track along with collision gives us a collected

reward of 3950

Better convergence with reward gates

With reward gates Without reward gates

On Hardware – using Reward Gates Method

Torque = 0.1 (43s) Torque = 0.2 (17s)

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab - Python

Analysis

Conclusion

Analysis

DDPG (Python) PPO (Matlab)DDPG (Matlab)

Torque: 0.13

Lap Time: 35 [sec]
Torque: 0.1

Lap Time: 68.4 [sec]

Torque: 0.12

Lap Time: 46 [sec]

Outline

Introduction & Background

Trajectory Tracking

Reinforcement Learning

RL in Matlab - Python

Analysis

Conclusion

Insights Gained

▪ Practical Implementation of theoretical knowledge (RL)

▪ Learning fundamental skills like Git, Docker, ROS

▪ Implementation of different Algorithms and techniques

according to the needs

▪ Deeper understanding about different parameters and

hyperparameters of RL

Project Feedback

Feedback

▪ New concepts learned

▪ Group work

▪ Idea sharing

▪ Well-Structured way of working

▪ Simulation-Hardware Fusion

Can be improved

▪ Battery management

Future work

▪ Tests with different tracks

▪ RL to also learn best torques

▪ Consider more dynamic characteristics

of car for learning

@rst_tuapl. Prof. Dr. rer. nat Frank Hoffmann

Lehrstuhl für Regelungssystemtechnik

Thank you for your kind attention!

	Slide 1: Chronos Miniature Car 🏎️
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Introduction – Chronos car
	Slide 5: Objective
	Slide 6: Introduction – CRS (Control and Robotics Software)
	Slide 7: Setup of Testing Arena
	Slide 8: Car Simulation Model
	Slide 9: Outline
	Slide 10: Path Following Feedback Control
	Slide 11: Custom Controller Node in Matlab/Python
	Slide 12: Steering angle feedback for P/PD Controller
	Slide 13: Controller with Feedforward action
	Slide 14: Hardware Test with Controller with Feedforward
	Slide 15: Outline
	Slide 16: Why Reinforcement Learning ?
	Slide 17: Implementation of Reinforcement Learning
	Slide 18: Parameters for Algorithms
	Slide 19: Outline
	Slide 20: Matlab Simulation [Offline]
	Slide 21: Matlab Simulation [Online]
	Slide 22: Online Matlab RL Model
	Slide 23: Offline Learning Results
	Slide 24: Best Result for Offline Learning using Matlab
	Slide 25: Progress
	Slide 26: Online Learning Results
	Slide 27: Online Learning Results
	Slide 28: CRS Simulation and Real Car
	Slide 29: Outline
	Slide 30: RL framework
	Slide 31: Environment
	Slide 32: DQN & DDPG
	Slide 33: Reward Gates
	Slide 34: Better convergence with reward gates
	Slide 35: On Hardware – using Reward Gates Method
	Slide 36: Outline
	Slide 37: Analysis
	Slide 38: Outline
	Slide 39: Insights Gained
	Slide 40: Project Feedback
	Slide 41: Thank you for your kind attention!

